前沿人工智能的发展现状①|数据要素
数据、算力、算法作为人工智能的三大基本要素,相互依存、相互支撑,共同促进人工智能快速发展。本文将从数据要素层面梳理前沿人工智能的发展现状。
|数据要素发展现状
数据产量高速增长,数据要素市场潜力巨大。目前,全球超大规模数据中心有一半位于中国和美国。为了支撑海量数据要素的流通和交易,我国组建国家数据局,协调推进数据基础制度建设、数据资源整合共享和开发利用等工作,并加快构建全国一体化算力网络、数据中心规模、云计算服务能力、5G基站数量等数据流通利用基础设施,大部分省份配套设立数据发展促进中心,组建数据集团。国家数据局党组书记、局长刘烈宏表示,截至2023年底,八大枢纽节点数据中心机架总规模超过105万标准机架,平均上架率达到61.9%,较2022年提升3.9个百分点。
数据成为新型生产要素,数据驱动数字经济稳步发展。数据要素中可提炼出信息、知识、智慧,因此被看作新一代信息技术下的新的生产资源,被广泛应用于金融、物联网、零售、医疗健康、航空航天等各领域,已快速融入生产、分配、流通、消费和社会服务管理等各环节,成为产业智能化升级、社会生产生活方式变革的重要力量及经济发展新动能。麦肯锡预测,数据流动量每增加10%,就将带动GDP增长0.2%。按照到2025年全球数据总量预计达174ZB计算,对经济增长的贡献有望达到11万亿美元。作为数字化的知识和信息,数据要素与数字经济发展密不可分。整体来看,数字经济重地主要是美洲、亚洲和欧洲。2022年,美国、中国、德国、日本、韩国这5个世界主要国家的数字经济总量为31万亿美元,数字经济占GDP的比重为58%,较2016年提升约11%;数字经济规模同比增长7.6%,高于GDP增速5.4个百分点。
数据质量影响人工智能应用性能,高质量的数据有助于提高人工智能决策的解释性和透明度。数据在人工智能中扮演着至关重要的角色,主要应用体现在以下几方面。一是机器学习,数据可以用于机器学习算法的训练和优化,使人工智能系统能够从中学习并改进其性能,通过大量数据的训练,机器学习模型可以自动发现数据中的模式,并据此进行预测或决策。二是自然语言处理,数据为自然语言处理提供了丰富的语料库,用于训练模型以提高机器对语言的理解和生成能力,这使得机器能够更准确地解析人类语言,实现智能对话、文本分类、情感分析等功能。三是图像识别,大量的图像数据可以用于训练图像识别模型,使其能够识别出各种物体、场景和特征,这对于自动驾驶、安防监控、医疗影像分析等领域具有重要意义。四是推荐系统,数据在推荐系统中发挥着至关重要的作用。通过对用户行为数据的收集和分析,推荐系统能够了解用户的兴趣和偏好,从而为用户推荐个性化的内容或产品。五是智能决策,在诸多领域,如金融、医疗、制造等,数据可以帮助人工智能系统进行智能决策。通过对大量数据的分析,系统可以发现潜在的风险和机会,为决策者提供有力支持。

(摘自《前沿人工智能:发展与治理》一书,有删节)